The role of the BRCA1 tumor suppressor in DNA double-strand break repair.

نویسندگان

  • Junran Zhang
  • Simon N Powell
چکیده

The tumor suppressor gene BRCA1 was cloned in 1994 based on its linkage to early-onset breast and ovarian cancer. Although the BRCA1 protein has been implicated in multiple cellular functions, the precise mechanism that determines its tumor suppressor activity is not defined. Currently, the emerging picture is that BRCA1 plays an important role in maintaining genomic integrity by protecting cells from double-strand breaks (DSB) that arise during DNA replication or after DNA damage. The DSB repair pathways available in mammalian cells are homologous recombination and nonhomologous end-joining. BRCA1 function seems to be regulated by specific phosphorylations in response to DNA damage and we will focus this review on the roles played by BRCA1 in DNA repair and cell cycle checkpoints. Finally, we will explore the idea that tumor suppression by BRCA1 depends on its control of DNA DSB repair, resulting in the promotion of error-free and the inhibition of error-prone recombinational repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair.

The pathway determining malignant cellular transformation, which depends upon mutation of the BRCA1 tumor suppressor gene, is poorly defined. A growing body of evidence suggests that promotion of DNA double-strand break repair by homologous recombination (HR) may be the means by which BRCA1 maintains genomic stability, while a role of BRCA1 in error-prone nonhomologous recombination (NHR) proce...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

DNA damage-induced cytotoxicity is dissociated from BRCA1's DNA repair function but is dependent on its cytosolic accumulation.

The tumor suppressor BRCA1 is a nuclear shuttling protein. However, the role of BRCA1 localization in the control of its functions remains to be elucidated. Given the central role of BRCA1 in DNA damage repair, we hypothesized that depletion of nuclear BRCA1 would compromise its nuclear function in DNA repair and thereby result in enhanced cytotoxic response to DNA damage. In this study, we sho...

متن کامل

The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression

The CtIP protein facilitates homology-directed repair (HDR) of double-strand DNA breaks (DSBs) by initiating DNA resection, a process in which DSB ends are converted into 3'-ssDNA overhangs. The BRCA1 tumor suppressor, which interacts with CtIP in a phospho-dependent manner, has also been implicated in DSB repair through the HDR pathway. It was recently reported that the BRCA1-CtIP interaction ...

متن کامل

BRCA1/BARD1 Orthologs Required for DNA Repair in Caenorhabditis elegans

Inherited germline mutations in the tumor suppressor gene BRCA1 predispose individuals to early onset breast and ovarian cancer. BRCA1 together with its structurally related partner BARD1 is required for homologous recombination and DNA double-strand break repair, but how they perform these functions remains elusive. As part of a comprehensive search for DNA repair genes in C. elegans, we ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 3 10  شماره 

صفحات  -

تاریخ انتشار 2005